Experimental Section²

5,6-Dihydro-7*H*,**12***H*-**6-carbamyldibenz**[c,f]**azocine** (1).—A soln of KCNO (3.57 g, 0.044 mole) in H₂O (55 ml) was added to a soln of 5,6-dihydro-7*H*,12*H*-dibenz[c,f]azocine ·HCl³ (10.8 g, 0.044 mole) in H₂O (6500 ml). After 15 days stirring at room temp, the reaction mixture afforded, when concd, a solid which was recrystd from EtOH to give 1 (6.6 g, 59.4%) as colorless crystals, mp 237-239°. Anal. (C₁₆H₁₆N₂O) C, H, N.

5,7,12,13-Tetrahydro-6-carbamyldibenz[c,g] azonine (2). Compound 2 was obtained similarly in 73.2% yield from 5,7,12,-13-tetrahydro-6*H*-dibenz[c,g] azonine \cdot HCl⁴ (12 g, 0.046 mole) and KCNO (3.75 g, 0.046 mole) in H₂O (2000 ml). Colorless crystals from 95% EtOH, mp 194–196°. *Anal.* (C₁₇H₁₈N₂O) C, H, N.

1-Cyano-2,3-diphenylaziridine (3).—A soln of BrCN (20.36 g, 0.19 mole) in Et₂O (80 ml) was dropped at 0-5° for 20 min into a soln of *cis*-2,3-diphenylaziridine⁵ (31.2 g, 0.16 mole) and Et₃N (19.4 g, 0.19 mole) in Et₂O (400 ml). The mixture was stirred for 4 hr at room temp and then filtered, the cake was repeatedly washed with Et₂O, and the combined filtrates were evapd to dryness. The residue was taken up with hexane and filtered to give **3** (33 g, 94%) as a colorless solid, mp 116-117°. Anal. (C₁₅-H₁₂N₂) C, H, N.

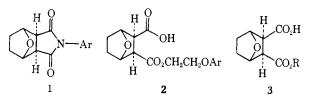
1-Carbamyl-2,3-diphenylaziridine (4).—A mixture of 3 (41.3 g, 0.187 mole), NaOH (75 g), H₂O (130 ml), and dioxane (950 ml) was stirred for 7 days at room temp and then for 24 hr at 50°. The resulting cloudy soln was evapd to dryness under reduced pressure, and the residue was taken up with H₂O and little Et₂O and then recrystd from C₆H₆ to give 4 (11.2 g, 25%) as colorless crystals, mp 158–160°. Anal. (C₁₅H₁₄N₂O) C, H, N.

(2) Melting points are corrected and were taken on a Buchi capillary melting point apparatus. All compounds were analyzed for C, H, N and anal. results were within $\pm 0.4\%$ of the theoretical values.

(3) G. Pala, A. Mantegani, and E. Zugna, Tetrahedron, 26, 1275 (1970).

(4) G. Pala, E. Crescenzi, and G. Bietti, *ibid.*, in press.

(5) A. Weissberger and H. Bach, Chem. Ber., 64B, 1095 (1931).


Some Derivatives of 7-Oxabicyclo[2.2.1]heptaneexo-cis-2,3-dicarboxylic Acid

SAMUEL J. DOMINIANNI* AND RONALD L. YOUNG

The Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46206

Received August 15, 1970

Recently some 7-oxabicyclo [2.2.1] heptane-2,3-dicarboximides (1) with anticonvulsant activity were described.¹ Some aryloxyethyl esters 2 were also reported² as plant growth regulators. We record herein the preparation of additional examples of 1 and of some mono esters 3, all of which proved to be highly toxic CNS depressants (Table I).

Experimental Section

N-Fluoroarylimides. 1.—A mixture of equimolar amts of 7-oxabicyclo[2.2.1]heptane-*exo-cis*-2,3-dicarboxylic anhydride and the appropriate fluoroaniline was heated without solvent at

TABLE I

				Approx ^c
			Mp^{b}	LD,
Compd	R or Ar	Formula ^a	°C	mg/kg
1 a	$o-FC_6H_4$	$C_{14}H_{12}FNO_3$	135 - 137	1000
1b	$m-FC_6H_4$	$C_{14}H_{12}FNO_3$	136 - 138	300
1c	$p-\mathrm{FC}_{6}\mathrm{H}_{4}$	$C_{14}H_{12}FNO_3$	168 - 169	300
3a	$(CH_3)_2CH$	$C_{11}H_{16}O_5$	127 - 129	300
3b	$o-\mathrm{CH}_3\mathrm{OC}_6\mathrm{H}_4\mathrm{CH}_2$	$C_{16}H_{18}O_{6}$	98 - 100	30
3c	m-CH ₃ OC ₆ H ₄ CH ₂	$\mathrm{C}_{16}\mathrm{H}_{18}\mathrm{O}_{6}$	127 - 128	30
3d	p-CH ₃ OC ₆ H ₄ CH ₂	$C_{16}H_{18}O_{6}$	110 - 112	10
3e	$C_6H_3CH_2$	$C_{15}H_{16}O_{5}$	122 - 124	30
3f	m-ClC ₆ H ₄ CH ₂	$C_{15}H_{15}ClO_5$	143 - 145	30
3g	$p-\mathrm{ClC}_{6}\mathrm{H}_{4}\mathrm{CH}_{2}$	$\mathrm{C}_{15}\mathrm{H}_{15}\mathrm{ClO}_{5}$	158 -1 60	30
3h	$p-\mathrm{FC}_{6}\mathrm{H}_{4}\mathrm{CH}_{2}$	$C_{15}H_{15}FO_5$	135 - 136	10
3i	$3,4-(OCH_2O)C_6H_3CH_2$	$\mathrm{C_{16}H_{16}O_{7}}$	145 - 147	10

^a All new compounds described gave elemental analyses for C and H within $\pm 0.4\%$ of the calculated values. Ir and nmr spectra were also in agreement with the assigned structures; in particular, the nmr spectra confirmed the assignment of exo-cis stereochemistry.¹ ^b Uncorr; recorded on a Mel-Temp apparatus. ^c Dose at which fatalities occurred; compds were administered ip to mice.

 150° for 1–2 hr. The cooled residue was then recrystd from EtOH.

Monoesters. 3.—A mixture of anhydride and the appropriate alcohol was heated at 125° for 1-2 hr. The cooled residue was extd with aq Na₂CO₃ and the aq extracts were acidified with HCl. The ppt was collected, washed with H₂O, dried, and recrystd from an appropriate solvent, usually C₆H₆–Skelly B.

The *i*-Pr deriv **3a** was prepared by refluxing the anhydride in *i*-PrOH containing pyridine.

Potential Antidiabetics. 7. N¹-(β-Hydroxybenzylmethyl)-3-methyl-4arylhydrazono-2-pyrazolin-5-ones and N¹-(β-Hydroxybenzylmethyl)-3-methyl-4-arylazo-5-methyl- or -phenylpyrazoles

H. G. GARG AND CHANDRA PRAKASH

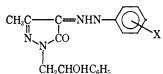
Department of Chemistry, University of Roorkee, Roorkee, India

Received August 4, 1970

A few pyrazoles and related compounds appear to give promising results in antidiabetic tests^{1,2} and, therefore, further combinations seem worthwhile studying. This paper describes the synthesis of $N^{1-}(\beta$ -hydroxybenzylmethyl)-3-methyl-4-arylhydrazono-2-pyrazolin-5-ones and $N^{1-}(\beta$ -hydroxybenzylmethyl)-3-methyl-4arylazo-5-methyl- or -phenylpyrazoles and also includes the hypoglycemic activity of 3-methyl-4-arylazo-5-phenylisoxazoles.²

Biological Results.—On oral administration at various doses (25–100 mg/kg) in fasted guinea pigs for 18 hr prior to and during testing, 4-phenylazo-, 4-(2-nitrophenylazo)-, 4-(3-nitrophenylazo)-, 4-(2-methylphenylazo)-, 4-(2-methoxyphenylazo)-, 4-(3-methoxyphenylazo)-, 4-(4-ethoxyphenylazo)-, 4-(2,5-dichlorophenylazo)-, and 4-(2,6-dichlorophenylazo)-3-methyl-5-phenylisoxazoles essentially displayed no hypoglycemic activity as compared with chloropropamide. After a predetermined time of peak effect the blood was ana-

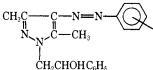
^{*} To whom correspondence should be addressed.


⁽¹⁾ E. R. Bockstahler, L. C. Weaver, and D. L. Wright, J. Med. Chem., 11, 603 (1968).

⁽²⁾ V. A. Kraft and N. N. Mel'nikov, Biol. Aktivn. Soedin., 255 (1965); Chem. Abstr., 64, 673g (1966).

⁽¹⁾ H. G. Garg, D.Sc. Thesis, Agra University, India (1969).

⁽²⁾ H. G. Garg and P. P. Singh, J. Med. Chem., 13, 1250 (1970), and ref cited therein.


Table I N^1 -(β -Hydroxybenzylmethyl)-3-methyl-4-arylhydrazono-5-pyrazolin-2-ones

		Yield,	Mp,			
No.	х	%	°C	$Color^a$	Formula	Anal.
1	H	55	133	YN	$\mathrm{C}_{18}\mathrm{H}_{18}\mathrm{N}_{4}\mathrm{O}_{2}$	C, H, N
2	3-Cl	50	89	OP	$C_{18}H_{17}ClN_4O_2$	N, Cl
3	4-Cl	52	139	ON	$\mathrm{C}_{18}\mathrm{H}_{17}\mathrm{ClN}_4\mathrm{O}_2$	N, Cl
4	2-MeO	55	157	OP	$\mathrm{C_{19}H_{20}N_4O_3}$	C, H, N
5	$2-NO_2$	55	178	\mathbf{RP}	${ m C_{18}H_{17}N_5O_4}$	C, H, N
6	4-Me	50	98	DON	$\mathrm{C}_{19}\mathrm{H}_{20}\mathrm{N}_4\mathrm{O}_2$	С, Н, N
7	$4-\mathrm{SO}_2\mathrm{NH}_2$	65	227	ON	$\mathrm{C}_{18}\mathrm{H}_{19}\mathrm{SN}_5\mathrm{O}_4$	N, S
8	$2,4-Br_2$	58	143	DYP	$\mathrm{C_{18}H_{16}Br_2N_4O_2}$	Br, N
-		- 1	1		~	D 1.

^a B, Brown; D, dark; N, Needles; O, orange; P, plates; Pe, pale; R, red; Y, yellow.

TABLE II N^{1} -(β -Hydroxybenzylmethyl)-3,5-dimethyl-4arylazopyrazoles

		Yield,	Mp,			
No.	х	%	°C	$Color^a$	Formula	Anal.
1	Н	50	129	DYN	$\mathrm{C_{19}H_{20}N_{4}O}$	C, H, N
2	2-Me	52	131	PeYN	$\mathrm{C}_{20}\mathrm{H}_{22}\mathrm{N}_4\mathrm{O}$	C, H, N
3	4-Me	56	139	DYN	$\mathrm{C}_{20}\mathrm{H}_{22}\mathrm{N}_{4}\mathrm{O}$	C, H, N
4	3-Cl	60	170	YP	$C_{19}H_{19}ClN_4O$	Cl, N
5	4-Cl	62	164	YN	$C_{19}H_{19}ClN_4O$	Cl, N
6	2-Br	65	161	OP	$\mathrm{C}_{19}\mathrm{H}_{19}\mathrm{Br}\mathrm{N}_{4}\mathrm{O}$	Br, N
7	3-NO2	50	147	ON	$C_{19}H_{19}N_5O_3$	C, H, N
8	4-EtO	55	103	\mathbf{YN}	$\mathrm{C}_{21}\mathrm{H}_{24}\mathrm{N}_4\mathrm{O}_2$	C, H, N
9	$2,3-Cl_2$	52	118	PeYN	$\mathrm{C_{19}H_{18}Cl_2N_4O}$	Cl, N
10	$2,3-Me_2$	56	126	YN	$C_{21}H_{24}N_4O$	С, Н, N
11	$2,4-Me_2$	56	114	\mathbf{YN}	$C_{21}H_{24}N_4O$	C, H, N
12	$2,4-(MeO)_{2}$	55	159	YN	$\mathrm{C}_{21}\mathrm{H}_{24}\mathrm{N}_{4}\mathrm{O}_{3}$	С, Н, N
13	2-Cl-6-Me	60	97	YN	$C_{20}H_{21}ClN_4O$	Cl, N
14	$2-Cl-4-NO_2$	62	181	ORP	$\mathrm{C}_{19}\mathrm{H}_{18}\mathrm{ClN}_5\mathrm{O}_3$	Cl, N
^a See footnote a, Table I.						

,

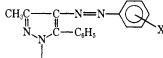
lyzed for glucose with the aid of a Technician AutoAnalyzer using the modified method of Hoffman.³

Experimental Section

Melting points were taken with a Kofler hot-stage apparatus and are uncorrected.

(3) W. S. Hoffman, J. Biol. Chem., 120, 51 (1937).

 α -(Hydrazinomethyl)benzyl alcohol,⁴ ethyl 2,3-dioxobutyra 2-arylhydrazones,⁵ 2,3,4-pentanetrione 3-arylhydrazones,⁶ an 1-phenyl-2-arylhydrazono-1,2,3-butanetriones⁷ were prepared previously described.


 $N^{1-}(\beta$ -Hydroxybenzylmethyl)-3-methyl-4-arylhydrazonopyrazolin-5-one.—A hot solution of α -(hydrazinomethyl)benz alcohol (2 mmoles) in EtOH (10 ml) was added to ethyl 2,3-diox butyrate-2-arylhydrazone (2 mmoles) in EtOH (15 ml). TI mixture was refluxed on a steam bath for 3 hr, followed by ti addition of glacial AcOH (4 ml). It was refluxed for another hr and allowed to stand overnight at 5-10°, when a cryst su' stance sepd. This was recrystd from EtOH (see Table I).

 $N^{1-}(\beta$ -Hydroxybenzylmethyl)-3,5-dimethyl-4-arylazopyrazole were obtained by using the same procedure as for I (see Tab II).

 $N^{1-}(\beta$ -Hydroxybenzylmethyl)-3-methyl-4-arylazo-5-pheny pyrazoles were also prepared by the same method (see Tab. III).

TABLE III

 $N^{1}-(\beta$ -Hydroxybenzylmethyl)-3-methyl-4-arylazo-5phenylpyrazoles

ĊH₂CHOHC₆H₅

		Yield,	Mp,			
No.	X	%	°C	$Color^a$	Formula	Anal.
1	Н	54	140	DYP	$\mathrm{C}_{24}\mathrm{H}_{22}\mathrm{N}_4\mathrm{O}$	C, H, N
2	$2-NO_2$	50	123	DYP	${ m C}_{24}{ m H}_{21}{ m N}_{5}{ m O}_{3}$	C, H, N
3	2-Br	57	101	OP	$\mathrm{C}_{24}\mathrm{H}_{21}\mathrm{BrN_4O}$	Br, N
4	2-MeO	55	157	DYN	$\mathrm{C}_{25}\mathrm{H}_{24}\mathrm{N}_4\mathrm{O}_2$	C, H, N
$\overline{5}$	$2,3-Cl_2$	55	141	ΥP	$\mathrm{C}_{24}\mathrm{H}_{20}\mathrm{Cl}_2\mathrm{N}_4\mathrm{O}$	Cl, N
6	2,4-Cl ₂	55	160	YP	$\mathrm{C}_{24}\mathrm{H}_{20}\mathrm{Cl}_2\mathrm{N}_4\mathrm{O}$	Cl, N
7	2,4-(MeO) ₂	50	167	BP	$\mathrm{C}_{26}\mathrm{H}_{26}\mathrm{N}_4\mathrm{O}_3$	C, H, N
8	$2,3-Me_2$	58	178	YP	$\mathrm{C}_{26}\mathrm{H}_{26}\mathrm{N}_{4}\mathrm{O}$	C, H, N
^a See footnote a, Table I.						

 $3-Methyl-4-arylazo-5-phenylisoxazoles had been synthesize in our laboratories earlier. <math display="inline">^2$

Acknowledgments.—We thank Professor W. U Malik, Head of this Department, for the facilities for the work, and the State C.S.I.R., Lucknow, for a Junic Research Assistantship (to C.P.). A 15-g sample (α -(hydrazinomethyl)benzyl alcohol was kindly supplie by Dr. D. T. Manning of the Research and Develop ment Department, Union Carbide Corporation, Sout Charleston, W. Va. 25303.

- (4) D. T. Manning and H. A. Coleman, J. Org. Chem., 34, 2746 (1969)
- (5) H. G. Garg and P. P. Singh, J. Med. Chem., 11, 1104 (1968).
- (6) H. G. Garg and P. P. Singh, ibid., 11, 1103 (1968).
- (7) H. G. Garg and P. P. Singh, J. Chem. Soc. C, 1141 (1969).